Part 4: Advanced life support

International Liaison Committee on Resuscitation

The topics reviewed by the International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support Task Force are grouped as follows: (1) causes and prevention, (2) airway and ventilation, (3) drugs and fluids given during cardiac arrest, (4) techniques and devices to monitor and assist the circulation, (5) peri-arrest arrhythmias, (6) cardiac arrest in special circumstances, (7) postresuscitation care, and (8) prognostication. Defibrillation topics are discussed in Part 3.

The most important developments in advanced life support (ALS) since the last ILCOR review in 2000 include:

- The emergence of medical emergency teams (METs) as a means of preventing in-hospital cardiac arrest
- Additional clinical data on the use of vasopressin in cardiac arrest
- Several new devices to assist circulation during CPR
- The use of therapeutic hypothermia to improve neurological outcome after ventricular fibrillation (VF) cardiac arrest
- The potential importance of glucose control after cardiac arrest

For many topics there were insufficient data with which to make firm treatment recommendations. The following interventions in particular need further research:

- The impact of METs on the incidence of cardiac arrest
- Outcome data to define the most appropriate advanced airway adjunct
- Evidence to identify the most effective vasopressor or if any vasopressor is better than placebo for cardiac arrest
- Randomised controlled trials on several new devices to assist circulation during CPR
- Randomised controlled trial data on several postresuscitation care therapies, such as control of ventilation, sedation, and glucose
- The precise role of, and method for implementing, therapeutic hypothermia: patient selection, external versus internal cooling, optimum target temperature and duration of therapy

Causes and prevention

Rescuers may be able to identify some noncardiac causes of arrest and tailor the sequence of attempted resuscitation. Most patients sustaining in-hospital cardiac arrest display signs of deterioration for several hours before the arrest. Early identification of these high-risk patients and the immediate arrival of a MET (also known as Rapid Response Team in the United States) to care for them may help prevent cardiac arrest. Hospitals in many countries are introducing early warning systems such as METs.

Identification of the aetiology of cardiac arrest

Consensus on science. Very few data address the aetiology of cardiac arrest directly. One prospective study (LOE 3)\(^1\) and one retrospective study (LOE 4)\(^2\)
suggested that rescuers can identify some noncardiac causes of some arrests.

Treatment recommendation. The physical circumstances, history, or precipitating events may enable the rescuer to determine a noncardiac cause of the cardiorespiratory arrest. Under these circumstances the rescuer should undertake interventions based on the presumed noncardiac aetiology.

Impact of medical emergency teams

The METs studied were composed generally of a doctor and nurse with critical-care training who were available at all times, responded immediately when called, and had specific, well-defined calling criteria. The MET system normally includes a strategy for educating ward staff about early recognition of critical illness. Variations of the MET system include critical-care outreach teams and patient-at-risk teams; all such variants use early warning scoring (EWS) systems to indicate patients who may be critically ill or at risk of cardiac arrest.

Consensus on science. Two supportive before-and-after single-center studies (LOE 3) documented significant reductions in cardiac arrest rates and improved outcomes following cardiac arrest (e.g. survival and length of stay in the intensive care unit [ICU]) after introduction of a MET. One cluster randomised controlled trial documented no difference in the composite primary outcome (cardiac arrest, unexpected death, unplanned ICU admission) between 12 hospitals in which a MET system was introduced and 11 hospitals that continued to function as normal (LOE 2). In this study, however, the MET system increased significantly the rate of emergency team calling. Two neutral studies documented a trend toward reduction in the rates of adult in-hospital cardiac arrest and overall mortality (LOE 7). There are no published data on the use of these airway adjuncts during CPR. One study in anaesthetised patients showed that nurses inserting nasopharyngeal airways were no more likely than anaesthesiologists to cause nasopharyngeal trauma (LOE 7). One LOE 5 study showed that the traditional methods of sizing a nasopharyngeal airway (measurement against the patient’s little finger or anterior nares) do not correlate with the airway anatomy and are unreliable. In one report insertion of a nasopharyngeal airway caused some airway bleeding in 30% of cases (LOE 7). Two case reports involve inadvertent intracranial placement of a nasopharyngeal airway in patients with basal skull fractures (LOE 7).

Treatment recommendation. Introduction of a MET system for adult hospital in-patients should be considered, with special attention to details of implementation (e.g. composition and availability of the team, calling criteria, education and awareness of hospital staff, and method of activation of the team). Introduction of an EWS system for adult in-hospital patients may be considered.

Airway and ventilation

Consensus conference topics related to the management of airway and ventilation are categorised as (1) basic airway devices, (2) advanced airway devices, (3) confirmation of advanced airway placement, (4) strategies to secure advanced airways, and (5) strategies for ventilation.

Basic airway devices

Nasopharyngeal airway

Consensus on science. Despite frequent successful use of nasopharyngeal airways by anaesthetists, there are no published data on the use of these airway adjuncts during CPR. One study in anaesthetised patients showed that nurses inserting nasopharyngeal airways were no more likely than anaesthesiologists to cause nasopharyngeal trauma (LOE 7). One LOE 5 study showed that the traditional methods of sizing a nasopharyngeal airway (measurement against the patient’s little finger or anterior nares) do not correlate with the airway anatomy and are unreliable. In one report insertion of a nasopharyngeal airway caused some airway bleeding in 30% of cases (LOE 7). Two case reports involve inadvertent intracranial placement of a nasopharyngeal airway in patients with basal skull fractures (LOE 7).

Treatment recommendation. In the presence of a known or suspected basal skull fracture, an oral airway is preferred, but if this is not possible and the airway is obstructed, gentle insertion of a nasopharyngeal airway may be lifesaving (i.e. the benefits may far outweigh the risks).

Advanced airway devices

The tracheal tube has generally been considered the optimal method of managing the airway during cardiac arrest. There is evidence that without adequate training and experience, the incidence of complications, such as unrecognised oesophageal intubation, is unacceptably high. Alternatives to
Part 4: Advanced life support

Tracheal intubation versus ventilation with bag-valve mask

Consensus on science. There were no randomised trials that assessed the effect of airway and ventilation management with bag-valve mask (BVM) alone versus airway management that includes tracheal intubation in adult victims of cardiac arrest. The only published randomised controlled trial identified (LOE 7) that compared tracheal intubation with BVM ventilation was performed in children who required airway management out-of-hospital. In this study there was no difference in survival-to-discharge rates, but it is unclear how applicable this paediatric study is to adult resuscitation. The study had some important limitations, including the provision of only 6 h of additional training for intubation, limited opportunity to perform intubations, and short transport times. Two studies compared outcomes from out-of-hospital cardiac arrest in adults treated by either emergency medical technicians or paramedics (LOE 3; LOE 4). The skills provided by the paramedics, including intubation and intravenous (IV) cannulation and drug administration, made no difference in survival to hospital discharge.

The reported incidence of unrecognised misplaced tracheal tube is 6% (LOE 5) to 14% (LOE 5). An additional problem common to any advanced airway is that intubation attempts generally require interruptions in chest compressions.

Treatment recommendation. There is insufficient evidence to support or refute the use of any specific technique to maintain an airway and provide ventilation in adults with cardiopulmonary arrest. Either bag-valve mask alone, or in combination with tracheal intubation, is acceptable for ventilation during CPR by prehospital providers. Rescuers must weigh the risks and benefits of intubation versus the need to provide effective chest compressions. The intubation attempt will require interruption of chest compressions, but once an advanced airway is in place, ventilation will not require interruption (or even pausing) of chest compressions. To avoid substantial interruptions in chest compressions, providers may defer an intubation attempt until return of spontaneous circulation (ROSC). To ensure competence, healthcare systems that provide advanced airways should address factors such as adequacy of training and experience and quality assurance. Providers must confirm tube placement and ensure that the tube is adequately secured (see below).

Tracheal intubation versus the Combitube/laryngeal mask airway

Consensus on science. In some communities tracheal intubation is not permitted or practitioners have inadequate opportunity to maintain their intubation skills. Under these circumstances several studies indicate a high incidence of unrecognised oesophageal intubation misplacement and unrecognised dislodgment. Prolonged attempts at tracheal intubation are harmful: the cessation of chest compressions during this time will compromise coronary and cerebral perfusion. Several alternative airway devices have been considered or studied for airway management during CPR: the Combitube and the LMA are the only alternative devices to be studied specifically during CPR. None of the studies of the LMA and Combitube during CPR has been adequately powered to study survival as a primary end point; instead, most researchers have studied insertion and ventilation success rates.

Combitube. Five randomised controlled trials conducted on adult patients undergoing resuscitation (LOE 2) and three additional randomised controlled trials involving patients undergoing anaesthesia (LOE 7) documented successful Combitube insertion and acceptable ventilation when compared with tracheal intubation. Benefits were documented for both experienced and inexperienced healthcare professionals with patients in hospital as well as in out-of-hospital settings.

Six additional studies support the use of the Combitube during CPR (LOE 3; LOE 4; LOE 5). Successful ventilation was achieved with the Combitube during CPR in 78.9−98% of patients (LOE 2; LOE 3; LOE 4; LOE 5). LMA. Seven randomised controlled trials involving anaesthetised patients (LOE 7) compared the LMA with tracheal intubation and another seven randomised control trials (LOE 7) that compared the LMA with other airways or ventilation techniques were reviewed. These studies suggested that experienced and inexperienced personnel can insert the device or successfully ventilate...
the patient’s lungs in a high proportion of cases compared with the tracheal tube or other airway management and ventilation devices.

One randomised crossover study (LOE 2)18 in adults undergoing resuscitation in the prehospital setting compared the Combitube with the LMA and showed that LMA insertion and successful ventilation could be achieved in a high proportion of patients.

Nonrandomised studies (LOE 353–55, 64, 71–79; LOE 438, 41–43; LOE 556–61) have also shown high insertion success rates by inexperienced providers both in and out of the hospital. Complication rates in nonrandomised studies (LOE 335, 41; LOE 453–55) have been extremely low.

Successful ventilation was achieved with the LMA during CPR in 71.5–98% of cases (LOE 238; LOE 341; LOE 453–55, 58–61).

Additional airway devices. Use of the laryngeal tube during CPR was described in just a few cases included in two LOE 5 studies62, 63 and one LOE 8 paper.64 There were no studies comparing the laryngeal tube with the tracheal tube in any patient population, although four randomised controlled trials compared the laryngeal tube favourably with the LMA in anaesthetised patients (LOE 7).65–68

Other devices include the ProSeal LMA, intubating LMA, airway management device, and pharyngeal airway express. There are no published data on the use of these devices during CPR.

Treatment recommendation. It is acceptable for healthcare professionals to use the Combitube or the LMA as alternatives to the tracheal tube for airway management in cardiac arrest.

Confirming advanced airway placement

Unrecognised oesophageal intubation is the most serious complication of attempted tracheal intubation. Routine confirmation of correct placement of the tracheal tube should reduce this risk. There are inadequate data to identify the optimal method of confirming tube placement during cardiac arrest. All devices should be considered adjuncts to other confirmatory techniques. There are no data quantifying the capability of these devices to monitor tube position after initial placement.

Exhaled CO\textsubscript{2}

Consensus on science. Evidence from one meta-analysis in adults (LOE 1),69 one prospective controlled cohort study (LOE 3),70 seven case series (LOE 5),71–79 and animal models (LOE 6)50, 81 indicate that exhaled CO\textsubscript{2} detectors (waveform, colormetry, or digital) may be useful as adjuncts to confirm tracheal tube placement during cardiac arrest. Of the 14 references included in this statement, 10 referred to colormetric assessment,69, 71–76, 79, 81–83 four to digital,59–71, 77 and four to waveform.69, 70, 79, 80 There are insufficient data from cardiac arrests to enable any firm recommendations for any particular technique. The range of results obtained from the reviewed papers is as follows:

- Percentage of tracheal placements detected: 33–100%
- Percentage of oesophageal placements detected: 97–100%
- Probability of tracheal placement if test result is positive (exhaled CO\textsubscript{2} detected): 100%
- Probability of oesophageal placement if test result is negative (exhaled CO\textsubscript{2} is not detected): 20–100%

One adult case series (LOE 5)52 shows that in the presence of a perfusing rhythm, exhaled CO\textsubscript{2} detection can be used to monitor tracheal tube position during transport.

No studies directly evaluated exhaled CO\textsubscript{2} to confirm placement of the Combitube or LMA during cardiac arrest in humans.

Treatment recommendation. Healthcare providers should recognise that evaluation of exhaled CO\textsubscript{2} is not infallible for confirming correct placement of a tracheal tube, particularly in patients in cardiac arrest. Exhaled CO\textsubscript{2} should be considered as just one of several independent methods for confirming tracheal tube placement. Continuous capnometry may be useful for early detection of tracheal tube dislodgment during transport.

Oesophageal detector device

Consensus on science. Eight studies of at least fair quality evaluated the accuracy of the syringe or self-inflating bulb type of oesophageal detector device (EDD) (LOE 321, 77, 83; LOE 584; LOE 7 [noncardiac arrest setting])85–89, but many suffer from few subjects and lack of a control group.

The EDD was highly sensitive for detection of misplaced tracheal tubes in the oesophagus (LOE 584; LOE 785–89). In two studies (LOE 377, 83) of patients in cardiac arrest, the EDD had poor sensitivity for confirming tracheal placement of a tracheal tube. In these studies up to 30% of correctly placed tubes may have been removed because of
the EDD suggested oesophageal placement of a tube (LOE 3). The EDD had poor sensitivity and specificity in the operating room in 20 children <1 year of age (LOE 2).

Treatment recommendation. The use of the EDD should be considered as just one of several independent methods for tracheal tube confirmation.

Strategies to secure advanced airways

Accidental dislodgment of a tracheal tube can occur at any time but may be more likely during resuscitation and during transport. The most effective method for securing the tracheal tube has yet to be determined.

Securing the tracheal tube

Consensus on science. There are no studies comparing different strategies for securing the tracheal tube during CPR. Two studies in the intensive care setting (LOE 7) indicated that commercial devices for securing tracheal tubes, backboards, cervical collars, and other strategies provide an equivalent method for preventing accidental tube displacement when compared with the traditional method of securing the tube with tape.

Treatment recommendation. Either commercially made tracheal tube holders or conventional tapes or ties should be used to secure the tracheal tube.

Strategies for ventilation

Very few studies address specific aspects of ventilation during ALS. Three recent observational studies report the ventilation rates delivered by healthcare personnel during cardiac arrest (LOE 5) indicated that commercial devices for securing tracheal tubes, backboards, cervical collars, and other strategies provide an equivalent method for preventing accidental tube displacement when compared with the traditional method of securing the tube with tape.

Treatment recommendation. Either commercially made tracheal tube holders or conventional tapes or ties should be used to secure the tracheal tube.

Disconnection from ventilation during cardiac arrest

Consensus on science. Eighteen LOE 5 articles involving 31 cases reported unexpected return of circulation (and in some cases prolonged neurologically intact survival) after cessation of resuscitation attempts. One case series suggested that this occurred in patients with obstructive airway disease (LOE 5). Four studies reported unexpected return of circulation in six cases in which resuscitation had ceased and ventilation was shown on repeated occasions (or was highly likely) to cause gas trapping and consequent haemodynamic compromise (LOE 5). The authors of all these studies suggested a period of disconnection from ventilation during resuscitation from PEA may be useful to exclude gas trapping.

Automatic transport ventilators

Consensus on science. Research of simulated cardiac arrest with manikins showed a significant decrease in gastric inflation with manually triggered, flow-limited, oxygen-powered resuscitators and masks compared with bag-valve masks (LOE 6). Anaesthetised patients with unprotected airways but not in cardiac arrest who were ventilated by firefighters had less gastric inflation with manually triggered, flow-limited, oxygen-powered resuscitators and masks than with bag-valve masks (LOE 5). A prospective cohort study of intubated patients, most of whom were in cardiac arrest, in an out-of-hospital urban setting showed no significant difference in arterial blood gas values between those ventilated with an ATV and those ventilated with a bag-valve device (LOE 4). Two laboratory studies showed that ATVs may provide safe and effective management of mask ventilation during CPR of adult patients with an unprotected airway (LOE 6).

Treatment recommendation. The use of a manually triggered, flow-limited resuscitator or an ATV by professional healthcare providers is reasonable for ventilation of adults with an advanced airway in place during cardiac arrest. The use of ATVs for adults without an advanced airway in place is discussed in Part 2: “Adult Basic Life Support”.

Drugs and fluids for cardiac arrest

Questions related to the use of drugs during cardiac arrest that were discussed during the 2005 Consensus Conference are categorised as (1) vasopressors, (2) antiarrhythmics, (3) other drugs and fluids, and (4) alternative routes of delivery.

Vasopressors

Despite the widespread use of adrenaline/epinephrine during resuscitation and several
studies involving vasopressin, there is no placebo-controlled study that shows that the routine use of any vasopressor at any stage during human cardiac arrest increases survival to hospital discharge. Current evidence is insufficient to support or refute the routine use of any particular drug or sequence of drugs. Despite the lack of human data, it is reasonable to continue to use vasopressors on a routine basis.

Adrenaline and vasopressin

Consensus on science. Despite promising lower-level data (LOE 2118; LOE 5119–121) and multiple well-performed animal studies (LOE 6), two large randomised controlled human trials of adults in cardiac arrest (LOE 1122,123) were unable to show an increase in the rates of ROSC or survival for vasopressin (40 U, with the dose repeated in one study) when compared with adrenaline (1 mg, repeated) as the initial vasopressor. In one large multicenter trial involving out-of-hospital cardiac arrest with all rhythms (LOE 1),123 on post hoc analysis the subset of patients with asystole had significant improvement in rate of survival to discharge but not neurologically intact survival when vasopressin 40 U (dose repeated once if necessary) was used as the initial vasopressor compared with adrenaline (1 mg, repeated if necessary). A meta-analysis of five randomised trials (LOE 1)124 showed no statistically significant differences between vasopressin and adrenaline for ROSC, death within 24 h, or death before hospital discharge. The subgroup analysis based on initial cardiac rhythm did not show any statistically significant differences in the rate of death before hospital discharge (LOE 1).124

Treatment recommendation. Despite the absence of placebo-controlled trials, adrenaline has been the standard vasopressor in cardiac arrest. There is insufficient evidence to support or refute the use of vasopressin as an alternative to, or in combination with, adrenaline in any cardiac arrest rhythm.

Alpha-methyl noradrenaline

Consensus on science. Preliminary animal studies (LOE 6)125–127 have suggested some potential short-term benefits with the use of alpha-methyl noradrenaline in animal models of VF. At this stage no published human studies have been identified.

Endothelin

Consensus on science. Evidence from five studies of cardiac arrest in animals (LOE 6)128–132 documented consistent improvement in coronary perfusion pressure with endothelin-1, but this did not translate into improved myocardial blood flow. No published human studies were available.

Antiarrhythmics

There is no evidence that giving any antiarrhythmic drug routinely during human cardiac arrest increases rate of survival to hospital discharge. In comparison with placebo and lidocaine, the use of amiodarone in shock-refractory VF improves the short-term outcome of survival to hospital admission. Despite the lack of human long-term outcome data, it is reasonable to continue to use antiarrhythmic drugs on a routine basis.

Amiodarone

Consensus on science. In two blinded randomised controlled clinical trials in adults (LOE 1),133,134 administration of amiodarone (300 mg133; 5 mg kg−1134) by paramedics to patients with refractory VF/pulseless ventricular tachycardia (VT) in the out-of-hospital setting improved survival to hospital admission when compared with administration of placebo133 or lidocaine 1.5 mg kg−1.134 Additional studies (LOE 7)135–139 document consistent improvement in defibrillation response when amiodarone is given to humans or animals with VF or haemodynamically unstable VT.

Treatment recommendation. In light of the short-term survival benefits, amiodarone should be considered for refractory VF/VT.

Other drugs and fluids

There is no evidence that giving other drugs routinely (e.g. buffers, aminophylline, atropine, calcium, magnesium) during human cardiac arrest increases survival to hospital discharge. There are several reports on the successful use of fibrinolytics during cardiac arrest, particularly when the arrest was caused by pulmonary embolism.

Aminophylline

Consensus on science. One case series (LOE 5)140 and three small randomised trials (LOE 2)141–143
Part 4: Advanced life support

indicate that aminophylline does not increase ROSC when given for bradyasystolic cardiac arrest. No studies have shown an effect of aminophylline on rates of survival to hospital discharge. There is no evidence of harm from giving aminophylline in bradyasystolic cardiac arrest (LOE 2141–143; LOE 5140).

Atropine

Consensus on science. Five prospective controlled nonrandomised cohort studies in adults (LOE 3149,144–147) and one LOE 4 study148 showed that treatment with atropine was not associated with any consistent benefits after in-hospital or out-of-hospital cardiac arrest.

Buffers

Consensus on science. There were no published LOE 1, 2, or 3 studies on the use of sodium bicarbonate during CPR. One LOE 2 study149 showed no advantage of Tribonate over placebo (neutral), and five retrospective analyses of uncontrolled clinical use of sodium bicarbonate were inconclusive (LOE 4).150–154 One LOE 4 study155 suggested that emergency medical services (EMS) systems using sodium bicarbonate earlier and more frequently had significantly higher rates of ROSC and hospital discharge and better long-term neurological outcome.

Results of animal studies are conflicting and inconclusive. Sodium bicarbonate was effective for treating the cardiovascular toxicity (hypotension, cardiac arrhythmias) caused by tricyclic antidepressants and other fast sodium channel blockers (see "Drug Overdose and Poisoning", below). Only one LOE 3 publication156 reported the successful treatment of VF cardiac arrest caused by tricyclic poisoning using sodium bicarbonate.

Treatment recommendation. Giving sodium bicarbonate routinely during cardiac arrest and CPR (especially in out-of-hospital cardiac arrest) or after ROSC is not recommended. Sodium bicarbonate may be considered for life-threatening hyperkalemia or cardiac arrest associated with hyperkalemia, preexisting metabolic acidosis, or tricyclic antidepressant overdose.

Magnesium

Consensus on science. Studies in adults in- and out-of-hospital (LOE 2157–166; LOE 3161; LOE 7162) and animal studies (LOE 6)163–166 indicated no increase in the rate of ROSC when magnesium was given during CPR. Results from one small case series of five patients (LOE 5)167 indicated benefit from giving magnesium in shock-resistant and adrenaline/lidocaine-resistantVF.

Treatment recommendation. Magnesium should be given for hypomagnesemia and torsades de pointes, but there are insufficient data to recommend for or against its routine use in cardiac arrest.

Fibrinolysis during CPR

Consensus on science. Adults have been resuscitated successfully following administration of fibrinolytics after initial failure of standard CPR techniques, particularly when the condition leading to the arrest was acute pulmonary embolism or other presumed cardiac cause (LOE 3168; LOE 4169–171; LOE 5172–176). One large clinical trial (LOE 2)177 failed to show any significant treatment effect from administration of fibrinolytics to out-of-hospital patients with undifferentiated pulseless electrical activity (PEA) cardiac arrest unresponsive to initial interventions. Four clinical studies (LOE 3168; LOE 4169–171) and five case series (LOE 5172–176) indicated that there is no increase in bleeding complications with fibrinolysis during CPR for nontraumatic cardiac arrest. Two animal studies (LOE 6)178,179 showed positive effects on cerebral reperfusion with fibrinolysis during CPR.

Treatment recommendation. Fibrinolysis should be considered in adult patients with cardiac arrest with proven or suspected pulmonary embolism. There are insufficient data to support or refute the routine use of fibrinolysis in cardiac arrest from other causes.

Fluids

Consensus on science. There were no published human studies of routine fluid use compared with no fluids during normovolaemic cardiac arrest. Four animal studies (LOE 6)180–183 of experimental VF neither support nor refute the use of IV fluids routinely. Fluids should be infused if hypovolemia is suspected.

Alternative routes for drug delivery

If IV access cannot be established, intraosseous (IO) delivery of resuscitation drugs will achieve adequate plasma concentrations. Resuscitation drugs can also be given via the tracheal tube, but the plasma concentrations achieved are variable and
substantially lower than those achieved when the same drug is given by the IV or IO routes.

Intraosseous route

Consensus on science. Two prospective trials in adults and children (LOE 3)\(^{184,185}\) and six other studies (LOE 4)\(^{192,193}\) documented that IO access is safe and effective for fluid resuscitation, drug delivery, and laboratory evaluation, and is attainable in all age groups.

Drugs given via the tracheal tube

Consensus on science.

Atropine and adrenaline. In one historic non-randomised cohort study (LOE 4)\(^{179}\), in adults, the rate of ROSC (27% versus 15%, \(P = .01\)) and rate of survival to hospital admission (20% versus 9%, \(P = .01\)) was significantly higher in the IV drug (atropine and adrenaline) group compared with the tracheal drug group. No patient who received tracheal drugs survived to hospital discharge compared with 5% of those who received IV drugs.

Adrenaline. During CPR the equipotent adrenaline dose given endobronchially was approximately 3–10 times higher than the IV dose (LOE 5)\(^{193}\). Endobronchial adrenaline (2–3 mg) diluted in 5–10 mL 0.9% NaCl achieved therapeutic plasma concentrations (LOE 5)\(^{193}\). Endobronchial adrenaline achieved higher plasma concentrations when diluted with water rather than 0.9% saline (LOE 6)\(^{193}\).

During CPR lung perfusion is only 10–30% of the normal value, resulting in a pulmonary adrenaline depot. When cardiac output is restored after a high dose of endobronchial adrenaline, prolonged reabsorption of adrenaline from the lungs into the pulmonary circulation may occur (LOE 6)\(^{194}\) causing arterial hypertension, malignant arrhythmias, and recurrence of VF.

Lidocaine. All studies were performed in haemodynamically stable (nonarrest) patients. Therapeutic plasma concentrations of lidocaine were achieved in these patients (LOE 5)\(^{196,197}\) after tracheal tube instillation but in only 40% of similar patients after instillation via an LMA (LOE 5)\(^{197,198}\). In anaesthetised healthy adults, endobronchial delivery delayed the increase in lidocaine plasma concentrations (LOE 2)\(^{199}\) in some (LOE 5)\(^{198,200}\) but not all of these studies (LOE 2)\(^{199}\). Deep endobronchial delivery of lidocaine via a catheter achieved lower blood concentrations than when lidocaine was injected directly into the tracheal tube. Endobronchial lidocaine achieved higher plasma concentrations and caused less reduction in PaO\(_2\) when diluted with water instead of 0.9% saline (LOE 5)\(^{201}\).

Vasopressin. Endobronchial vasopressin was more effective in increasing diastolic blood pressure than equivalent doses of endobronchial adrenaline (LOE 6)\(^{202}\). In a small animal study, endobronchial vasopressin was more effective than placebo in increasing coronary perfusion pressure during CPR and improved survival rates (LOE 6)\(^{203}\).

Treatment recommendation. If IV access is delayed or cannot be achieved, IO access should be considered. Give drugs via the tracheal tube if intravascular (IV or IO) access is delayed or cannot be achieved. There are no benefits from endobronchial injection compared with injection of the drug directly into the tracheal tube. Dilution with water instead of 0.9% saline may achieve better drug absorption.

Monitoring and assisting the circulation

Specific questions related to the use of techniques and devices to (1) monitor the performance of CPR during cardiac arrest or (2) assist the circulation (alternatives to standard CPR) during cardiac arrest were discussed during the 2005 Consensus Conference. They are listed below.

Monitoring CPR performance

End-tidal CO\(_2\) can be used as an indicator of ROSC. Arterial blood gas analysis may help to guide therapy. Measurement of coronary artery perfusion might be helpful, but because it is technically difficult to measure, it is not available routinely.

End-tidal CO\(_2\) monitoring to guide therapy during cardiac arrest

Consensus on science. No studies have addressed this question directly. The studies published over the past 5 years were consistent with the older literature, which showed that higher end-tidal CO\(_2\) values during CPR correlate with ROSC (LOE 5)\(^{204–207}\).

In experimental models, end-tidal CO\(_2\) concentration during ongoing CPR correlated with cardiac output, coronary perfusion pressure, and successful resuscitation from cardiac arrest (LOE 6)\(^{208–214}\). Eight case series have shown that patients who were successfully resuscitated from cardiac arrest had significantly higher end-tidal CO\(_2\) levels than patients who could not be resuscitated (LOE 7)\(^{215}\).
Capnometry can also be used as an early indicator of ROSC (LOE 5;218,219; LOE 6222).

In case series totaling 744 patients, intubated adults in cardiac arrest receiving CPR who had a maximum end-tidal CO₂ of <10 mmHg had a poor prognosis even if CPR was optimal (LOE 5).204,205,217,221–223 This prognostic indicator may be unreliable immediately after starting CPR because two studies (LOE 5)217,223 show no difference in ROSC and survival in those with an initial end-tidal CO₂ of <10 mmHg. Two additional studies (LOE 5)221,222 reported that five patients achieved ROSC despite an initial end-tidal CO₂ of <10 mmHg (one patient survived).

Treatment recommendation. End-tidal CO₂ monitoring is a safe and effective noninvasive indicator of cardiac output during CPR and may be an early indicator of ROSC in intubated patients.

Arterial blood gas monitoring during cardiac arrest

Consensus on science. There was evidence from one LOE 5 study224 and 10 LOE 7 studies225–234 that arterial blood gas values are an inaccurate indicator of the magnitude of tissue acidosis during cardiac arrest and CPR in both the in-hospital and out-of-hospital settings. The same studies indicate that both arterial and mixed venous blood gases are required to establish the degree of acidosis.

Arterial blood gas analysis alone can disclose the degree of hypoxaemia (LOE 5235; LOE 6236,237; LOE 7238,239,240). Arterial blood gas analysis can also highlight the extent of metabolic acidosis (LOE 5241; LOE 6239; LOE 7242,243,244). Arterial CO₂ is an indicator of adequacy of ventilation during CPR (LOE 5214; LOE 6215; LOE 7216). If ventilation is constant, an increase in PaCO₂ is a potential marker of improved perfusion during CPR (LOE 5245; LOE 6246; LOE 7247).

Treatment recommendation. Arterial blood gas monitoring during cardiac arrest enables estimation of the degree of hypoxaemia and the adequacy of ventilation during CPR but is not a reliable indicator of the extent of tissue acidosis.

Coronary perfusion pressure to guide resuscitation

Consensus on science. Coronary perfusion pressure (CPP) (aortic relaxation [diastolic] minus the right atrial relaxation phase blood pressure during CPR) correlated with both myocardial blood flow and ROSC (LOE 3);248,249 a value ≥15 mmHg is predictive of ROSC. Increased CPP correlated with improved 24-h survival in animal studies (LOE 6);249 and is associated with improved myocardial blood flow and ROSC in studies of adrenaline, vasopressin, and angiotensin II (LOE 6);249–251.

Treatment recommendation. Coronary perfusion pressure can guide therapy during cardiac arrest. In an intensive care facility the availability of direct arterial and central venous pressure monitoring makes calculation of CPP potentially useful. Outside the intensive care facility the technical difficulties of invasive monitoring of central arterial and venous pressure make it difficult to calculate CPP routinely during cardiac arrest.

Techniques and devices to assist circulation during cardiac arrest

Several techniques or adjuncts to standard CPR have been investigated, and the relevant data were reviewed extensively. One multicenter human study (LOE 2)240 showed poor quality and frequent interruptions in chest compressions delivered during prehospital CPR. In the hands of some groups, novel techniques and adjuncts may be better than standard CPR. The success of any technique depends on the education and training of the rescuers or the resources available (including personnel). Because information about these techniques and devices is often limited, conflicting, or supportive only for short-term outcomes, no recommendations can be made to support or refute their routine use.

Transcutaneous pacing for asystole

Consensus on science. Three randomised controlled trials (LOE 2)252–254 and additional studies (LOE 3);255; LOE 5);256–259; LOE 6);260; LOE 7);261 indicate no improvement in the rate of admission to hospital or survival to hospital discharge when pacing was attempted by paramedics or physicians in asystolic patients in the prehospital or the hospital (emergency department) setting.

Treatment recommendation. Pacing is not recommended for patients in asystolic cardiac arrest.

CPR prompt devices

Consensus on science. Two studies in adults (LOE 5)25,94 show that unprompted CPR was frequently of
poor quality in the out-of-hospital and in-hospital settings. One study in adults (LOE 3),261 one study in children (LOE 3),261 and animal (LOE 6)264–265 and manikin studies (LOE 6)266–272 show consistent improvement in end tidal CO\textsubscript{2} or quality of CPR performed, or both, when feedback was provided with a variety of formats to guide CPR. In one manikin study (LOE 6),272 95\% of rescuers reported discomfort in the heels of their hands and wrists when using a CPR prompt applied between their hands and the victim’s chest, but no long-term injuries were noted. A crossover study of paramedic students previously trained in CPR showed that audio feedback significantly improved the proportion of correct inflations, correct compression depth, and duration of compressions (LOE 6).268 A similar study of nursing students showed improved inflations and depth of compression (LOE 6).272

Treatment recommendation. CPR prompt devices may improve CPR performance. See also Part 8: "Interdisciplinary Topics".

Interposed abdominal compression CPR
W73A,W73B

Consensus on science. Two randomised controlled trials (LOE 1271; LOE 2274) of in-hospital cardiac arrests showed improved ROSC and survival of event when interposed abdominal compression CPR (IAC-CPR) performed by rescuers trained in the technique was compared with standard CPR. One of these studies (LOE 1)272 also reported improved rates of survival to hospital discharge. These data and those from a crossover study (LOE 3)275 were combined in two meta-analyses (LOE 1).276,277 One randomised controlled trial (LOE 2)278 of out-of-hospital cardiac arrests did not show any survival advantage when IAC-CPR was undertaken by rescuers trained in the technique compared with standard CPR. Some harm was reported in one child (LOE 5).279 Although only a small proportion of patients had post-mortem examinations, there was no evidence of significant harm.

High-frequency CPR
W74,163H

Consensus on science. One clinical trial of nine patients (LOE 4)280 showed that high-frequency CPR (120 compressions min−1) improved haemodynamics over standard CPR. Three laboratory studies (LOE 6)281–283 showed that high-frequency CPR (120–150 compressions min−1) improved haemodynamics without increasing trauma. In one additional laboratory study (LOE 6),284 high-frequency CPR did not improve haemodynamics over standard CPR.

Active compression-decompression CPR
W75A,W75B,W163J

Consensus on science. Despite initial promising studies suggesting short-term survival benefits (LOE 2),285,286 and even intact neurological survival (LOE 1),287 a Cochrane meta-analysis (LOE 1)288 of 10 trials (involving 4162 patients) compared active compression-decompression (ACD) CPR with standard CPR in the out-of-hospital setting and did not show a significant increase in rates of immediate survival or hospital discharge. One meta-analysis (LOE 1)288 of two trials (826 patients) comparing ACD-CPR with standard CPR after in-hospital cardiac arrest did not detect a significant increase in rates of immediate survival or hospital discharge. Although one small study (LOE 4)289 showed harm with an increased incidence of sternal fractures in the ACD-CPR group when compared with standard CPR alone, the large meta-analysis288 did not find any increase in complications when ACD-CPR was compared with standard CPR.

Load distributing band CPR
W76A,W76B,W163F

Consensus on science. The load distributing band (LDB) is a circumferential chest compression device composed of a pneumatically actuated constricting band and backboard. A case control study of 162 adults (LOE 4)290 documented improvement in survival to the emergency department when LDB-CPR was administered by adequately trained rescue personnel to patients with cardiac arrest in the prehospital setting. The use of LDB-CPR improved haemodynamics in one in-hospital study of end-stage patients (LOE 3)291 and two laboratory studies (LOE 6).292,293

Mechanical (piston) CPR
W77A,W77B,W163B,W163E

Consensus on science. One prospective randomised study and two prospective randomised crossover studies in adults (LOE 1)294–296 indicated improvement in end-tidal CO\textsubscript{2} and mean arterial pressure when automatic mechanical (piston) CPR was undertaken by medical and paramedical personnel in the hospital or prehospital setting. In several studies in animals (LOE 6),297–300 mechanical (piston) CPR improved end-tidal CO\textsubscript{2}, cardiac output, cerebral blood flow, mean arterial pressure, and short-term neurological outcome.
Part 4: Advanced life support

Consensus on science. The Lund University Cardiac Arrest System (LUCAS) is a gas-driven sternal compression device that incorporates a suction cup for active decompression. There were no published randomised human studies comparing LUCAS-CPR with standard CPR. A single study of pigs with VF showed that LUCAS-CPR improved haemodynamics and short-term survival rates compared with standard CPR (LOE 6). The LUCAS was also used in 20 patients, but incomplete outcome data was reported (LOE 6).

Phased thoracic-abdominal compression-decompression CPR

Consensus on science. Phased thoracic-abdominal compression-decompression (PTACD) CPR combines the concepts of IAC-CPR and ACD-CPR. One modeling study (LOE 7) and one laboratory study (LOE 6) showed that PTACD-CPR improved haemodynamics. One clinical, randomised study in adults (LOE 2) and additional experimental studies (LOE 6) documented no improvement in survival rates for patients with cardiac arrest when PTACD-CPR was used for assistance of circulation during ALS in the prehospital or in-hospital setting. PTACD-CPR did not delay starting CPR substantially and had no significant known disadvantages nor caused harm when used correctly.

Minimally invasive direct cardiac massage

Consensus on science. Minimally invasive direct cardiac massage (MIDCM) involves insertion of a plunger-like device through a small incision in the chest wall to enable direct compression of the heart. MIDCM improved ROSC and coronary perfusion pressure compared with standard CPR in one laboratory study (LOE 6) and generated systemic blood flow and myocardial and cerebral flow similar to that produced with open-chest cardiac massage in two laboratory studies (LOE 6). The MIDCM device was placed in patients in the field and generated improved blood pressure over standard CPR in one clinical study (LOE 3). But in this study, use of the MIDCM device caused cardiac rupture in one patient. MIDCM increased the defibrillation threshold for standard external defibrillation but reduced the defibrillation threshold if the MIDCM device was used as one of the electrodes in one laboratory study (LOE 6).

Impedance threshold device

Consensus on science. The impedance threshold device (ITD) is a valve that limits air entry into the lungs during chest recoil between chest compressions. It is designed to reduce intrathoracic pressure and enhance venous return to the heart. A randomised study of 230 adults documented increased admissions to the ICU and 24-h survival rates (LOE 2) when an ITD was used with standard CPR in patients with cardiac arrest (PEA only) in the prehospital setting. The addition of the ITD improved the haemodynamics during standard CPR in five laboratory studies (LOE 6) and one clinical study (LOE 2). A randomised study of 400 adults showed increased ROSC and 24-h survival rates (LOE 3) when an ITD was used with ACD-CPR in patients with cardiac arrest in the prehospital setting. The addition of the ITD improved the haemodynamics during ACD-CPR in one laboratory study (LOE 6) and one clinical study (LOE 2). One laboratory study failed to show an improvement in haemodynamics with the use of the ITD during ACD-CPR (LOE 6). Compared with standard CPR, ROSC and 24-h survival were increased when the ITD was used with ACD in a randomised study of 210 prehospital patients (LOE 1) and haemodynamics were improved in two laboratory studies (LOE 6).

Extracorporeal techniques and Invasive perfusion devices

Consensus on science. The only adult data come from three case series (LOE 5). One of these indicated that extracorporeal CPR (ECPR) was more successful in postcardiotomy patients than those in cardiac arrest from other causes. The other two studies suggested that ECPR is not beneficial for patients presenting to the emergency department in cardiac arrest with the exception of cardiac arrest associated with hypothermia or drug intoxication.

Open-chest CPR
Evidence from animal studies (LOE 6) indicates that open-chest CPR produces greater survival rates, perfusion pressures, and organ blood flow than closed-chest CPR.

Treatment recommendation. Open-chest CPR should be considered for patients with cardiac arrest in the early postoperative phase after cardiothoracic surgery or when the chest or abdomen is already open.

Periarrest arrhythmias

Narrow-complex tachycardia

There are four options for the treatment of narrow-complex tachycardia in the periarrest setting: electrical conversion, physical manoeuvres, pharmacological conversion, or rate control. The choice depends on the stability of the patient and the rhythm. In a haemodynamically unstable patient, narrow-complex tachycardia is best treated with electrical cardioversion.

Drug therapy for atrial fibrillation

Consensus on science. One randomised controlled trial in adults and three additional studies documented improvement in rate control when magnesium (LOE 3), diltiazem (LOE 2), or β-blockers (LOE 2) were given by physicians, nurses, and paramedics in both the out-of-hospital (LOE 3) and hospital settings to patients with atrial fibrillation with a rapid ventricular response.

Two randomised controlled trials in adults (LOE 2) and additional studies documented improvement in rhythm when ibutilide, digoxin, clonidine, magnesium, or amiodarone were given by physicians or nurses to patients with atrial fibrillation in the hospital setting.

Treatment recommendation. Stable narrow-complex tachycardia (excluding atrial fibrillation or atrial flutter) should be treated first with vagal manoeuvres (avoiding carotid sinus massage in the elderly); these will terminate about 20% of PSVTs. If vagal manoeuvres are not used or if they fail, give adenosine.

A calcium channel blocker (verapamil or diltiazem) infusion or amiodarone may be used as a second-line treatment for the 10–15% of patients who do not respond to adenosine. In unstable PSVT electrical cardioversion is the treatment of choice; IV rapid bolus adenosine can be tried if electrical cardioversion is not immediately available.

Broad-complex tachycardia

The stability of the patient determines the choice of treatment for wide-complex (broad-complex) tachycardia. In unstable wide-complex tachycardia electrical cardioversion is the treatment of choice.

Drug therapy for stable ventricular tachycardia

Consensus on science. Three observational studies (LOE 5) indicated that amiodarone is effective for the termination of shock-resistant or
Part 4: Advanced life support

225

Drug therapy for polymorphic ventricular tachycardia

Consensus on science. One observational study (LOE 5)271,373 showed that IV magnesium will not terminate polymorphic VT (excluding torsades de pointes) in patients with a normal QT interval. Lidocaine is not effective, but amiodarone may be (LOE 4).372

Treatment recommendation. For haemodynamically stable polymorphic VT, where electrical therapy is not desirable or is ineffective, treatment with amiodarone may be effective.

Therapy for torsades de pointes

Consensus on science. Two observational studies (LOE 5)271,373 showed that IV magnesium can terminate torsades de pointes effectively in patients with prolonged QT interval. One adult case series (LOE 5)274 showed that isoproterenol or ventricular pacing can be effective in terminating torsades de pointes associated with bradyarrhythmia and drug-induced QT prolongation.

Treatment recommendation. Magnesium, isoproterenol, and ventricular pacing can be used to treat torsades de pointes.

Bradycardia

In the peri-arrest setting the rescuer should seek and treat reversible causes of bradycardia. In the absence of reversible causes, atropine remains the first-line drug for acute symptomatic bradycardia. Failure to respond to atropine will usually necessitate transcutaneous pacing, although second-line drug therapy with dopamine, adrenaline, isoproterenol, or theophylline may be successful. Fist pacing may be attempted pending the arrival of an electrical pacing unit.

Drug therapy for symptomatic bradycardia

Consensus on science. In one randomised clinical trial in adults (LOE 2)275 and one historic cohort study in adults and additional reports (LOE 4),376–379 IV atropine improved heart rate, symptoms, and signs associated with bradycardia. An initial dose of 0.5 mg, repeated as needed to a total of 1.5 mg, was effective in both in-hospital and out-of-hospital treatment of symptomatic bradycardia.

In two prospective controlled non-randomised cohort studies in hospitalized adults (LOE 4),376,380 administration of IV theophylline improved heart rate, symptoms, and signs associated with bradycardia when IV glucagon (3 mg initially, followed by infusion at 3 mg h-1 if necessary) was given to hospital patients with drug-induced symptomatic bradycardia not responding to atropine.

One study in 10 healthy volunteers indicated that a 3-mg dose of atropine produces the maximum achievable increase in resting heart rate (LOE 7).381

One study indicated that atropine may paradoxically cause high-degree AV block in patients after cardiac transplantation (LOE 5).382

Treatment recommendation. For symptomatic bradycardia, give atropine 0.5–1 mg i.v., repeated every 3–5 min, to a total of 3 mg. Be prepared to initiate transcutaneous pacing quickly in patients who do not respond to atropine (or second-line drugs if these do not delay definitive management). Pacing is also recommended for severely symptomatic patients, especially when the block is at or below the His-Purkinje level. Second-line drugs for symptomatic bradycardia include dopamine, adrenaline, isoproterenol, and theophylline.}

Consider IV glucagon if β-blockers or calcium channel blockers are a potential cause of the bradycardia. Atropine should not be used in patients with cardiac transplants.
Part 4: Advanced life support

Fist pacing in cardiac arrest

Consensus on science. Three case series indicated that fist pacing can be effective. Two of the largest studies have included 100 (LOE 5)383 and 50 (LOE 5)384 patients. One study (LOE 5)385 compared fist pacing with two electrical modes in the same patient and found all three techniques equally effective. Selected case series indicate that the most effective technique is to deliver serial rhythmic blows (fist pacing) with the closed fist over the left lower edge of the sternum to pace the heart at a physiological rate of 50—70 beats min−1 (LOE 5)383,384. There are no prehospital case reports of fist pacing. In virtually all published cases of fist pacing, complete heart block was the underlying bradyarrhythmia.

Treatment recommendation. Fist pacing may be considered in haemodynamically unstable bradyarrhythmias until an electrical pacemaker (transcutaneous or transvenous) is available.

Cardiac arrest in special circumstances

In some circumstances modification of the standard resuscitation technique is required to maximize the victim’s chance of survival. In many of these special circumstances recognition of the critically ill patient may enable early treatment to prevent cardiac arrest. The special circumstances reviewed during the consensus process can be categorised as environmental (hypothermia, submersion, electrocution), pregnancy, asthma, and drug overdose/poisoning.

Environmental

Hypothermia

Consensus on science. Hypothermic patients with pulse. One randomised controlled trial (LOE 1)386 showed active surface heating to be more effective than metallic foil insulation in an experimental model of accidental hypothermia. Two studies (LOE 4)387,388 documented the use of exogenous surfactant for fresh water-induced severe respiratory distress syndrome; two victims survived. A case report described the use of noninvasive positive-pressure ventilation in two victims of submersion (LOE 5)396. There was no evidence to support or refute the use of steroids (LOE 5)397, nitric oxide (LOE 5)398, extracorporeal membrane oxygenation (ECMO) rewarming after ROSC (LOE 5)389, therapeutic hypothermia after ROSC (LOE 5)399, or vasopressin (LOE 5)400 after submersion. Case reports documented the use of ECMO in young children with severe hypothermia after submersion (LOE 5)401,402.

Treatment recommendation. Victims of submersion should be removed from the water and resuscitated by the fastest means available. Only victims with risk factors (history of diving, water slide use, trauma, alcohol) or clinical signs of injury or focal neurological signs should be treated as having a potential spinal cord injury, with stabilisation of the cervical and thoracic spine.

Electrocution

Consensus on science. Case reports (LOE 5)403–412 indicated that early BLS and ALS may be lifesaving and may decrease short and long term cardiac and neurological injury.

Drowning

For additional information see “Drowning” in Part 2: “Adult Basic Life Support”.

Consensus on science. One study indicated that victims of drowning are at risk for cervical spine injury only if they have clinical signs of severe injury (LOE 4)392. Three single case reports (LOE 5)397–399 documented the use of exogenous surfactant for fresh water-induced severe respiratory distress syndrome; two victims survived. A case report described the use of noninvasive positive-pressure ventilation in two victims of submersion (LOE 5)396.

There was no evidence to support or refute the use of steroids (LOE 5)397, nitric oxide (LOE 5)398, extracorporeal membrane oxygenation (ECMO) rewarming after ROSC (LOE 5)389, therapeutic hypothermia after ROSC (LOE 5)399, or vasopressin (LOE 5)400 after submersion. Case reports documented the use of ECMO in young children with severe hypothermia after submersion (LOE 5)401,402.

Treatment recommendation. Victims of submersion should be removed from the water and resuscitated by the fastest means available. Only victims with risk factors (history of diving, water slide use, trauma, alcohol) or clinical signs of injury or focal neurological signs should be treated as having a potential spinal cord injury, with stabilisation of the cervical and thoracic spine.
neurological sequelae for victims of electrocution and lightning injuries. Case studies of victims of lightning and electric injuries emphasize the possible coexistence of multiple injuries and the importance of ensuring initial responder safety. Survivors may have permanent neurological and cardiac sequelae.

Pregnancy

Aetiology of cardiac arrest in pregnancy

Consensus on science. One large case series (LOE 5)413 suggested that systematic consideration of the reversible causes of cardiac arrest may enable skilled rescuers to identify the aetiology of cardiac arrest in pregnancy in the hospital setting. Evidence extrapolated from peri-arrest resuscitation scenarios (LOE 7)414,415 indicated that ultrasound assessment undertaken by trained rescuers may help to identify intra-abdominal haemorrhage as a cause of cardiac arrest in pregnancy in the hospital setting.

Treatment recommendation. Rescuers should try to identify common and reversible causes of cardiac arrest in pregnancy during resuscitation attempts. The use of abdominal ultrasound by a skilled operator should be considered in detecting pregnancy and possible causes of cardiac arrest in pregnancy, but this should not delay other treatments.

Resuscitation technique for pregnancy

Consensus on science. A case series (LOE 5)416 and numerous case reports (LOE 7)417–420 documented an improvement in rates of maternal and neonatal survival to discharge when delivery of the fetus was performed within 5 min of cardiac arrest in pregnancy if initial resuscitative efforts by skilled rescuers in the hospital setting failed.

Extrapolation from anaesthesia (LOE 7)422 and a manikin study (LOE 6)421 suggests that a left lateral tilt of 15 degrees will relieve aortocaval compression in the majority of pregnant women and enable effective chest compressions by rescuers in any setting.

A human volunteer study (LOE 7)424 showed that there was no change in transthoracic impedance during pregnancy. The standard recommended energy levels for adults should be used by rescuers when attempting defibrillation in cardiac arrest during pregnancy in any setting.

Treatment recommendation. If initial resuscitative efforts fail, Caesarean delivery of the fetus (hysterotomy) should be performed within 5 min of onset of cardiac arrest in pregnancy to improve maternal or fetal survival. A left lateral tilt of 15 degrees is required to relieve inferior vena caval compression in the majority of pregnant women. The energy levels used for defibrillation in adults are appropriate for use in pregnancy.

Asthma

Defibrillation in asthma

Consensus on science. One volunteer study in healthy adults (LOE 7)425 documented an increased transthoracic impedance with increasing positive end-expiratory pressure (PEEP) and suggested that increased shock energy may be required if initial defibrillation attempts fail for patients with asthma-induced cardiac arrest in any clinical setting.

Treatment recommendation. If initial attempts at defibrillation fail for the patient with asthma and VF, higher shock energies should be considered.

Ventilation in asthma

Consensus on science. Evidence extrapolated from a systematic review of patients with noncardiac arrest (LOE 7)426 suggested decreased dynamic hyperinflation (auto-PEEP) when helium/oxygen mixtures were used to ventilate the lungs of asthmatic patients during in-hospital cardiac arrest. Evidence extrapolated from three noncardiac arrest case series (LOE 7)427–429 suggested that asthmatic patients were at risk of gas trapping during cardiac arrest, especially if they were ventilated with higher tidal volumes and rates than recommended. Two small case series (LOE 5)430,431 and anecdotal reports (LOE 8)432 failed to show a consistent benefit from compression of the chest wall, followed by a period of apnoea to relieve gas trapping, for patients with asthma-induced cardiac arrest in any clinical setting (see also "Disconnection From Ventilation During Cardiac Arrest", above).

Evidence extrapolated from a noncardiac arrest case series (LOE 7)433 suggested improved ventilation of the lungs and decreased gastric inflation if the trachea is intubated early by trained rescuers for patients with asthma-induced cardiac arrest in any setting. Evidence from two noncardiac arrest case reports (LOE 6)434,435 neither supported...
nor refuted the use of open-chest ventilation and cardiac compressions in asthma-induced cardiac arrest.

Treatment recommendation. There are insufficient data to support or refute the use of helium-oxygen mixtures in asthma-related cardiac arrest. Compression of the chest wall or a period of apnoea may relieve gas trapping if dynamic hyperinflation occurs. In asthma-related cardiac arrest the patient’s trachea should be intubated early to facilitate ventilation and minimize the risk of gastric inflation.

Drug overdose and poisoning

Sodium bicarbonate for poisoning and electrolyte disturbances

Consensus on science. Evidence from the use of bicarbonate in calcium channel blocker overdose in two children (LOE 5) with fatal overdoses of nifedipine neither supported nor refuted the value of bicarbonate in calcium channel blocker overdose. There were no controlled human studies of sodium bicarbonate therapy for arrhythmias or hypotension related to tricyclic antidepressant overdose. However, evidence from case reports (LOE 5) and animal studies (LOE 4) and in vitro studies (LOE 6) supported the use of sodium bicarbonate to treat tricyclic antidepressant-induced arrhythmias or hypotension.

Treatment recommendation. Sodium bicarbonate is recommended for the treatment of tricyclic antidepressant overdose. Although no study has investigated the optimal target pH with bicarbonate therapy, a pH of 7.45–7.55 has been commonly accepted and seems reasonable.

Ventilation before naloxone in opioid overdose

Consensus on science. Evidence from case series (LOE 5) and extrapolation from LOE 7 studies indicate fewer adverse events when ventilation is provided before administration of naloxone by EMS personnel to patients with opioid-induced respiratory depression in the prehospital setting.

Postresuscitation care

ROSC is just the first step toward the goal of complete recovery from cardiac arrest. Interventions in the postresuscitation period are likely to significantly influence the final outcome, yet there are relatively few data relating to this phase. In the absence of firm guidelines, approaches to postresuscitation care are heterogeneous. Postresuscitation interventions are categorised into the following areas: (1) ventilation, (2) temperature control (therapeutic hypothermia and prevention and treatment of hyperthermia), (3) seizure control and sedation, and (4) supportive therapies (blood glucose control, coagulation control, prophylactic antiarrhythmic therapy).

Therapeutic hypothermia improves neurological outcome in some cardiac arrest survivors, and hyperthermia appears harmful. Tight blood glucose control improves outcome in undifferentiated critically ill patients, but the effect of this therapy in the postresuscitation phase is unknown. Prediction of outcome in comatose survivors of cardiac arrest remains problematic: median nerve somatosensory-evoked potentials measured 72h after cardiac arrest may be helpful, but analyses of several serum markers were inconclusive.

Ventilation

Control of arterial carbon dioxide

Consensus on science. Five studies in adults (LOE 2); (LOE 3); LOE 5; LOE 7) and numerous animal studies (LOE 6) documented harmful effects of hypocapnia (cerebral ischemia) after cardiac arrest. Two studies provide neutral evidence (LOE 5; LOE 6).

Treatment recommendation. There are no data to support the targeting of a specific PaCO2 after resuscitation from cardiac arrest. Data extrapolated from patients with brain injury, however, imply that ventilation to normocarbia is appropriate. Routine hyperventilation may be detrimental and should be avoided.

Temperature control

Therapeutic hypothermia

Consensus on science. Two randomised clinical trials (LOE 1; LOE 2) showed improved outcome in adults who remained comatose after ini-
Part 4: Advanced life support

Prevention and treatment of hyperthermia

Other rhythm or cardiac arrest in hospital.

One study (LOE 4)\(^\text{470}\) documented improved metabolic end points (lactate and O\(_2\) extraction) when comatose adult patients were cooled after ROSC from out-of-hospital cardiac arrest in which the initial rhythm was PEA/asystole. A small study (LOE 4)\(^\text{471}\) showed benefit after therapeutic hypothermia in comatose survivors of non-VF arrest.

External or internal cooling techniques can be used to initiate cooling within minutes to hours (LOE 1\(^\text{468}\), LOE 2\(^\text{469,470}\), LOE 5\(^\text{472—475}\)). The only studies documenting improved outcome with therapeutic hypothermia after cardiac arrest used external cooling (LOE 1\(^\text{468}\); LOE 2\(^\text{469,470}\)). An infusion of 30 ml kg\(^{-1}\) of 4 °C saline achieved a decrease in core temperature of approximately 1.5 °C (LOE 5).\(^\text{472,473,475}\) One study in patients with cardiac arrest (LOE 5)\(^\text{474}\) and three other studies (LOE 7)\(^\text{476—479}\) have documented that intravascular cooling enables more precise control of core temperature than external methods.

Studies documenting improved outcome with therapeutic hypothermia after cardiac arrest used continuous temperature monitoring (LOE 1\(^\text{468}\); LOE 2\(^\text{469,470}\)).

Multiple studies in animals (LOE 6)\(^\text{479—484}\) documented the importance of initiating cooling as soon as possible and for adequate duration (e.g. 12—24 h). Optimal variables, including onset, depth, and duration of cooling, are unknown.

Seizures or myoclonus occurs in survivors of cardiac arrest (LOE 5\(^\text{474,485—487}\)). Shivering will necessitate sedation and intermittent or continuous neuromuscular blockade. Use of continuous neuromuscular blockade could mask seizure activity.

Treatment recommendation. Unconscious adult patients with spontaneous circulation after out-of-hospital cardiac arrest should be cooled to 32—34 °C for 12—24 h when the initial rhythm was VF. Cooling to 32—34 °C for 12—24 h may be considered for unconscious adult patients with spontaneous circulation after out-of-hospital cardiac arrest from any other rhythm or cardiac arrest in hospital.

Prevention and treatment of hyperthermia

Consensus on science. A period of postarrest hyperthermia is common in the first 48 h after cardiac arrest (LOE 4).\(^\text{488—490}\) There were no controlled prospective studies that examined the clinical impact of antipyretics (or physical cooling devices) to prevent hyperthermia after cardiac arrest.

The risk of unfavourable neurological outcome increased for each degree of body temperature >37 °C (LOE 3).\(^\text{491}\) Hyperthermia was associated with increased morbidity and mortality in post-stroke patients (LOE 7).\(^\text{492}\) Post-stroke pyrexia was not treated effectively by antipyretics such as paracetamol or ibuprofen (LOE 7)\(^\text{493,494}\); however, antipyretics or physical cooling methods have been associated with decreased infarct volumes in animal models of global ischaemia (LOE 7).\(^\text{495,496}\)

Treatment recommendation. Hyperthermia should be avoided after cardiac arrest.

Seizure control and sedation

Prevention and control of seizures

Consensus on science. There were no studies that directly addressed the use of prophylactic anticonvulsant drugs after cardiac arrest in adults. There are data indicating that seizures can precipitate cardiac arrest (LOE 4\(^\text{497,498}\); LOE 5\(^\text{499—501}\) and respiratory arrest (LOE 5).\(^\text{502}\)

Treatment recommendation. Seizures increase the oxygen requirements of the brain and can cause life-threatening arrhythmias and respiratory arrest; therefore, seizures following cardiac arrest should be treated promptly and effectively. Maintenance therapy should be started after the first event once potential precipitating causes (e.g. intracranial haemorrhage, electrolyte imbalance, etc) are excluded.

Sedation and pharmacological paralysis

Consensus on science. There were no data to support or refute the use of a defined period of ventilation, sedation, and neuromuscular blockade after cardiac arrest. One observational study in adults (LOE 5)\(^\text{503}\) documents increased incidence of pneumonia when sedation is prolonged beyond 48 h after prehospital or in-hospital cardiac arrest.

Other supportive therapies

Blood glucose control

Consensus on science. Tight control of blood glucose (range 80—110 mg dl\(^{-1}\) or 4.4—6.1 mmol l\(^{-1}\))
with insulin reduces hospital mortality rates in critically ill adults (LOE 1502; LOE 4503), but this has not been shown in post-cardiac arrest patients. Several human studies have documented a strong association between high blood glucose after resuscitation from cardiac arrest and poor neurological outcome (LOE 4504; LOE 5505). There was good evidence that persistent hyperglycaemia after stroke is associated with a worse neurological outcome (LOE 7506).

The optimal blood glucose target in critically ill patients has not been determined. Comatose patients were at particular risk from unrecognised hypoglycaemia, and the risk of this complication occurring increases as the target blood glucose concentration is lowered (LOE 8507). One study in rats has shown that glucose plus insulin improves cerebral outcome after asphyxial cardiac arrest (LOE 6508). Therapeutic hypothermia was associated with hyperglycaemia (LOE 2469).

Treatment recommendation. Providers should monitor blood glucose frequently after cardiac arrest and should treat hyperglycaemia with insulin but avoid hypoglycaemia.

Coagulation control

Consensus on science. There are no studies evaluating the role of anticoagulation alone to improve outcome after ROSC. In three nonexperimental reports (LOE 4164; LOE 5519; LOE 6579) using fibrinolytics combined with heparin (anticoagulation) after prolonged cardiac arrest in humans, ROSC, but not 24-h survival rates, was significantly better.

Prophylactic antiarrhythmic therapy

Consensus on science. No studies specifically and directly addressed the prophylactic use of antiarrhythmic therapy started immediately after resuscitation from cardiac arrest. Six studies (LOE 5520–522) documented inconsistent improvement in long-term survival when prophylactic antiarrhythmics were given to survivors of cardiac arrest from all causes. Six studies (LOE 1526; LOE 2529,530; LOE 5531) showed that implantable cardioverter defibrillators (ICDs) improve survival when compared with antiarrhythmics in survivors of cardiac arrest.

Treatment recommendation. Giving prophylactic antiarrhythmics to patients who have survived cardiac arrest, irrespective of aetiology, can neither be recommended nor rejected. It may be reasonable, however, to continue an infusion of an antiarrhythmic drug that restored a stable rhythm successfully during resuscitation.

Prognostication

Prognostication during cardiac arrest

Predictive value of neurological examination

Consensus on science. Five studies (LOE 4532,533; LOE 5534–538) documented some ability to predict outcome in adults when neurological examination is undertaken during cardiac arrest, but there is insufficient negative predictive value for this assessment to be used clinically.

Treatment recommendation. Relying on the neurological exam during cardiac arrest to predict outcome is not recommended and should not be used.

Prognostication after resuscitation

Predictive value of standard laboratory analyses

Consensus on science. In eight human prospective studies (LOE 3517,538; LOE 4541,539–543) of the value of biomarkers in predicting outcome from cardiac arrest, none was clinically useful in ascertaining outcome in the acute setting. One retrospective human study suggested that creatine kinase-MB could be used as an independent predictor of survival (LOE 4539) but delays in completing the measurement may make this clinically less helpful.

In some studies in animals (LOE 6544–556) lactate and acid base values showed a trend correlating with unfavourable outcomes. None of these studies could formulate a predictive model conclusively to identify a biochemical marker level that gave a reasonable prediction of outcome.

Predictive value of neuron-specific enolase and protein S-100b

Consensus on science. One randomised controlled study (LOE 2537) 4 prospective controlled studies (LOE 3558–561 and 11 case series/cohort studies (LOE 4566,567–569; LOE 5565–566) indicated that neuron-specific enolase (NSE) and protein S-100b may be useful in predicting the outcome of cardiac arrest. But the 95% confidence interval (CI)
in these trials was wide, and in many of the trials, return to consciousness (without comment on level of function) was considered a "good" outcome.

The only meta-analysis to look at this topic estimated that to obtain 95% CI with a 5% false-positive rate would require a study population of approximately 600 patients (LOE 1).569 No study this large has been conducted.

Treatment recommendation. No laboratory analyses (NSE, S-100b, base deficit, glucose, or soluble P-selectin) provide reliable prediction of the outcome after cardiac arrest.

Somatosensory-evoked potentials

Consensus on science. Eighteen prospective studies (LOE 3)568,570–596 and one meta-analysis (LOE 1)569 indicated that median nerve somatosensory-evoked potentials in normothermic patients comatose for at least 72 h after cardiac arrest predict poor outcome with 100% specificity. Bilateral absence of the N20 component of the evoked potentials in comatose patients with coma of hypoxic-anoxic origin is uniformly fatal.

Treatment recommendation. Median nerve somatosensory-evoked potentials measured 72 h after cardiac arrest can be used to predict a fatal outcome in patients with hypoxic-anoxic coma.

Electroencephalogram

Consensus on science. The use of the electroencephalogram (EEG), performed at least 24–48 h after arrest, has been evaluated in case series of humans (LOE 5)576,585,588–598 and animals (LOE 6).399–401 On the modified Hockaday scale, grades I (normal alpha with theta-delta activity), IV (alpha coma, spikes, sharp waves, slow waves with very little background activity), and V (very flat to isoelectric) were most useful prognostically. But the prognosis was unpredictable for those with grade II and III EEGs.

Treatment recommendation. The use of the EEG performed a minimum of 24–48 h after a cardiac arrest can help define the prognosis in patients with grade II, IV, and V EEGs.

Appendix A. Supplementary data

References

232 Part 4: Advanced life support

Part 4: Advanced life support

Part 4: Advanced Life Support

Part 4: Advanced life support

Part 4: Advanced life support

conversion of atrial fibrillation or flutter. Am J Health Syst Pharm 2003;60:2308—12.

in an experimental model of accidental hypothermia: a ran-
387. Roggla G, Frossard M, Rodrigo C, Rowe BH. Heliox for non-
fatal electrical injuries of the heart. Am Heart J 1980;100:103–
5.
cardiopulmonary arrest: case reports and recommendations. Acad Emerg
389. Finegold H, Darwich A, Romeo R, Vallejo M, Ramanathan S.
Successful resuscitation after maternal cardiac arrest by immediate
390. Cardosi RJ, Porter KB. Cesarean delivery of twins during
391. Nice A, Knapton PH, Godden MR. Perimortem cesarean
section: case reports and recommendations. Acad Emerg
Successful resuscitation after maternal cardiac arrest by
immediate cesarean section in the labor room. Anesthesi-
ology 2002;96:1278.
393. Naranjo CA, Akpaekwu PD, Goldfeder B. Perimortem cesarean
section: case reports and recommendations. Acad Emerg
394. Kinsella SM. Lateral tilt for pregnant women: why 15
395. Rees GA, Willis BA. Resuscitation in late pregnancy. Anaes-
396. Nason J, Elcock D, Williams M, Deakin CD. Do physiological
changes in pregnancy change defibrillation energy require-
397. Deakin CD, McLaren RM, Petley GW, Clewlow F, Dailymple-
398. Rodrigo G, Polack C, Rodrigo C, Rowe BH. Heliox for non-
intubated acute asthma patients. Cochrane Database Syst
399. Williams TJ, Tuxen OV, Scheinkestel CD, Czanyi D, Bowes G. Risk factors for morbidity in mechanically ventilated
Part 4: Advanced life support

Part 4: Advanced life support

Part 4: Advanced life support

575. Nakabayashi M, Kurokawa A, Yamamoto Y. Immediate predi-
576. Rothstein TL. The role of evoked potentials in anoxic-ischemic coma and severe brain trauma. J Clin Neurophys-
577. Nakabayashi M, Kurokawa A, Yamamoto Y. Immediate pre-
580. Chen R, Bolton CF, Young B. Prediction of outcome in patients with anoxic coma: a clinical and electrophysio-
583. Chellou-Heraut F, Durand MC, Clair B, Gajdos P, Raphael JC. Importance of evoked potentials in the evolutive prog-
584. Kano T, Shimoeda O, Morikawa T, Yagishita Y, Hashiguchi A. Evaluation of the central nervous function in resuscitated comatose patients by multilevel evoked potentials. Resus-
585. Rothstein TL, Thomas EA, Sarni SM. Predicting outcome in hypoxic-ischemic coma. A prospective clinical and elec-
587. Zandbergen EG, de Haan RJ, Stoutenbeek CP, Koelman JH, Hijdra A. Systematic review of early predict-
588. Synk WM. Validity of a revised EEG coma scale for predict-
589. Moller M, Holm B, Sindrup E, Nielsen BL. Electroencephalo-
graphic prediction of anoxic brain damage after resuscita-
591. Bassetti C, Karbowiak K. Prognostic value of electroen-
nophysiol 2000;111:297–304.
594. Kaplan PW, Genoud D, Ho TW, Jallon P. Etiology, neurologic correlations, and prognosis in alpha coma. Clin Neurophys-
595. Yamashita S, Moriwa T, Ohgo S, et al. Prognostic value of electroencephalogram (EEG) in anoxic encephalopathy after car-
596. Aljifri A. Early electroencephalographic findings in patients with anoxic encephalopathy after cardiopul-
600. Geocadin RG, Muthuswamy J, Sherman DL, Thakor NV, Han-